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Abstract—The chemokine receptor, CXCR2, plays an important role in recruiting granulocytes to sites of inflammation and has
been proposed as an important therapeutic target. A number of CXCR2 antagonists have been synthesized and evaluated; however,
quantitative structure–activity relationship (QSAR) models have not been developed for these molecules. Most CXCR2 antagonists
can be grouped into four related categories: N,N 0-diphenylureas, nicotinamide N-oxides, quinoxalines, and triazolethiols. Based on
these categories, we developed a QSAR model for 59 nonpeptide antagonists of CXCR2 using a partial 3D comparison of the antag-
onists with local fingerprints obtained from rigid and flexible fragments of the molecules. Each compound was represented by cal-
culated structural descriptors that encoded atomic charge, molar refraction, hydrophobicity, and geometric features. We obtained
good conventional R2 coefficients, high leave-one-out cross-validated values for the whole dataset ðR2

cv ¼ 0:785Þ, as well as for the
dataset divided into subsets of triazolethiol derivatives ðR2

cv ¼ 0:821Þ and joint subset of N 0-diphenylureas, nicotinamide N-oxides,
N,N 0-diphenylureas, and quinoxaline derivatives and quinoxalines derivatives ðR2

cv ¼ 0:766Þ, indicating a good predictive ability
and robustness of the model. Additionally, charge distribution was found to be a significant contributor in modeling whole dataset.
Using our model, structural fragments (submolecules) responsible for the antagonist activity were also identified. These data suggest
the QSAR models developed here may be useful in guiding the design of CXCR2 antagonists from molecular fragments.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Leukocyte recruitment is mediated through the actions
of both exogenous and endogenous chemotactic fac-
tors.1 Among the primary endogenous chemotactic fac-
tors are the chemokines or chemoattractant cytokines.2

Chemokines belong to a large superfamily of small (8–
10 kDa), structurally related proteins that are character-
ized by a distinctive pattern of four conserved cysteines.3

One family of chemokines is characterized by the pres-
ence of an intervening amino acid between the first pair
of conserved cysteines and is known as the �Cys-X-Cys�
(CXC) or a chemokine family. The CXC chemokines
can be further subdivided into two groups, one contain-
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ing a glutamate–leucine–arginine (ELR) motif between
the N-terminus and the first cysteine and the other with-
out this motif.3 The ELR-containing CXC chemokines,
such as interleukin-8 (IL-8) and growth-related onco-
gene a (Gro-a), play important roles in the recruitment
and activation of neutrophils during inflammation.2 In-
deed, these chemokines have been implicated in the
pathogenesis of a number of inflammatory diseases,
including asthma, rheumatoid arthritis, psoriasis, reper-
fusion injury, and adult respiratory distress syndrome.4,5

Furthermore, the ELR-containing CXC chemokines are
potent promoters of angiogenesis and mediate their
angiogenic activity via binding and activating specific
surface receptors on the endothelium.6 In certain cases,
the angiogenic activity of these chemokines can also
contribute to tumorigenesis.7

Physiological responses to ELR-containing CXC che-
mokines are mediated via two distinct transmembrane
G-protein-coupled receptors, known as CXC receptors
1 and 2 (CXCR1 and CXCR2, respectively).8 CXCR1
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Figure 1. Relationship between numbers of optimal superimpositions

(NOS) and optimality criterion threshold (K0) for selected compounds.
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binds IL-8 and granulocyte chemotactic protein-2
(GCP-2/CXCL6) with high affinity, whereas CXCR2 is
promiscuous, binding seven known ELR a-chemokines
with high affinity, including GRO-a (CXCL-1), GRO-
b (CXCL-2), GRO-c (CXCL-3), epithelial neutrophil
activating peptide 78 (ENA-78/CXCL-5), GCP-2
(CXCL-6), neutrophil-activating peptide-2 (NAP-2/
CXCL-7), and IL-8 (CXCL-8).8 Furthermore, CXCR2
is expressed on a wide range of cell types, such as neu-
trophils, mast cells, T cells, keratinocytes, and cerebellar
neurons.9–11

Studies with CXCR2�/� mice demonstrated that
CXCR2 plays an essential role in neutrophil recruitment
during inflammatory responses.12,13 Additionally,
marked reduction in the spontaneous metastases of tu-
mor cells to the lungs was observed in CXCR2�/� mice.7

Thus, CXCR2 has been proposed as an important target
for drug development, as such therapeutic agents would
be useful in the treatment of a number of diseases. In-
deed, CXCR2 is one of the first chemokine receptors
for which a potent, small-molecule antagonist
(SB225002) was developed as a potential treatment for
inflammatory diseases, such as rheumatoid arthritis,
chronic obstructive pulmonary disease, bronchopulmo-
nary dysplasia, and retrovirus infections.14–16 Subse-
quently, many chemically diverse small molecule
CXCR2 antagonists have been reported.17–22 Thus,
CXCR2 antagonists are considered an exciting alterna-
tive for the development of beneficial therapeutics with
antiinflammatory and, possibly, anticancer effects.

Construction of quantitative structure–activity relation-
ship (QSAR) models is essential for understanding the
molecular mechanism of action of receptor antagonists,
their design, and virtual screening.23 Among the known
antagonists of chemokine receptors, this type of analysis
has been performed only for CCR5 synthetic antago-
nists,24–26 and, to our knowledge, there are no reported
QSAR models for CXCR2 antagonists. Currently, sev-
eral QSAR models utilizing a flexible docking approach
have been shown to be highly efficient in the description
of ligand–receptor interactions.27 Alternative approach-
es utilize ligand-based 3D-QSAR principles and are
applicable when a detailed receptor structure is not
available. These methods rely on pair-wise comparison
of molecular spatial structures within a dataset or their
superimposition on a template molecule.28 The prob-
lems of conformational flexibility and structural diversi-
ty emerge immediately on performing structure
comparisons when a data set includes molecules from
different chemical classes. Although several approaches
for resolving these problems have been suggested,29,30

there are still significant difficulties in defining optimal
orientation and/or conformation of a compound with
respect to a given template.

The approach used in the present study exploits the
hypothesis of local similarity, which allows us to circum-
vent these difficulties by using a frontal polygon meth-
od.31,32 We utilized this approach to investigate the
structure–activity relationships of the CXCR2-antago-
nists, and the partial 3D comparison of antagonists with
local �fingerprints� obtained from molecules of the most
and least active compounds in the dataset was used to
construct QSAR models. These models provide a basis
for further application in activity prediction of newly de-
signed antagonists and virtual drug screening.
2. Results

Ligand-based QSAR and drug design by the frontal
polygon method is characterized by a large array of
optimal superimpositions (OS). The following values
of weight coefficients were used during formation of
such arrays: wr = 11.86, wh = 2.40, wq = 3.28,
wH = 0.132, and wR = 3.05 Æ 10�4. These coefficients
were calculated according to Eq. 2, with recognition cri-
teria dispersions D determined through all compounds
1–59. The number of OS (NOS) increases significantly
with the decrease of selection control when the K0 value
is enhanced. In the case of K0 = 1, the sum F of weighed
squares for deviations of recognition parameters in Eq.
1 is equal to the weighted dispersion of these parameters
within a dataset, i.e., low-specific superimpositions can
be treated as optimal. With lower K0 values, higher spec-
ificity is necessary for a superimposition to become opti-
mal, and the NOS of the OS array becomes smaller. The
relationship between NOS values and K0 for some antag-
onists investigated is shown in Figure 1. With increasing
K0 from 0.1 to 0.5, the NOS value was enhanced by 20–
50 times. This leads to changes in the quality of QSAR
models, as is discussed below.

Some of the template fingerprints have a rather high per-
cent participation in OS (Table 1). Clearly, these finger-
prints reflect the most common structural features of
compounds in a given dataset in terms of geometry,
charge distribution, hydrophobicity, and size of substit-
uents. The phenyl group and halogen-containing aro-
matic fragments are key examples of parent
submolecules for these fingerprints. Fingerprints with



Table 1. Fractions of OS for selected template submolecules

Template submolecule

(compound number in parentheses)

OS fraction (%)a

Cl Cl

(16) 13.0

Br

(8) 12.6

Cl
(5) 9.1

(30) 7.3

NN

N

(30) 3.6

NN

N

(29) 1.6

O

HN NH
(5) 1.0

CF3 (31) 0.03

a Percent values reflect the ratio of OS number with participation of a

given submolecule to total OS number for Set 1+2.
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low participation in OS are also present and were
accounted for in deriving QSAR because differences in
biological activity can be connected with subtle details
of molecular structure. Moreover, it is noticeable from
Table 1 that important triazole and carbamide submol-
ecules represent contributed lower fractions of OS,
although these fragments possess specific charge distri-
butions and can participate significantly in molecular
recognition.

The OS array obtained for each dataset was used for the
construction of assignment matrix V of N · K size,
where N is the number of compounds and K is the total
Table 2. Characteristics of QSAR models obtained for Set 1, Set 2, Set 1+2 o

Dataset K0 S2

Set 1 0.1 0.160

0.2 0.127

0.3 0.197

Set 2 0.1 0.113

0.2 0.048

0.3 0.060

Set 1+2 0.1 0.216

0.2 0.175

0.3 0.201

0.4 0.150

0.5 0.191

Optimal base QSAR models are indicated in bold.
number of atomic projections in all the template finger-
prints. The matrix element Vjk is defined as the sum of
projections assigned to the kth projection in all OS of
the jth compound. The following dimensions of Vmatri-
ces were obtained for the datasets: 27 · 246 (Set 1),
29 · 253 (Set 2), and 56 · 218 (Set 1+2). Matrices V
are redundant (i.e., N < K), and their use for QSAR-
analysis is possible only after reduction of space, which
is achieved by applying the partial least-squares (PLS)
procedure.33 This reduction leads to a small basis of H
variables, nevertheless reflecting the main part (Pinf) of
the information contained in initial redundant matrices.

Characteristics of linear QSAR models (Eq. 4) derived
with reduced basis for three datasets are shown in Table
2. The basis size H = 5 was chosen for Set 1 and Set 2,
whereas better results were obtained for Set 1+2 with
H = 6. If the number of variables (H) was smaller, then
linear models with higher standard deviations (S) and
lower correlation coefficients (R) were observed. Values
of R2

cv and Pinf also decreased. For example, the values
R = 0.877, R2

cv ¼ 0:712, and Pinf = 0.938 were obtained
if five variables were used for deriving QSAR. On the
other hand, a larger basis size of H > 6 resulted in
negligible improvement of the QSAR models.

The influence ofK0 on the quality of QSARmodels is evi-
dent in Table 2. For each dataset, theR andR2

cv values first
become higher, reaching a maximal level, and then are
lowered with the increase in K0. This observation can be
interpreted in terms of OS specificity. At K0 = 0.1, when
only OS with very high specificity are included in the ar-
ray, a lot of structural informationuseful for betterQSAR
is lost, and the quality of linearmodels is not great. On the
other hand, a loosened approach toOS selection at higher
K0 also decreases coefficients R and R2

cv because of infor-
mational �noise� (i.e., OS array contains low-specific
superimpositions which do not reflect actual peculiarities
of ligand recognition). Optimal QSAR models were con-
structed with K0 = 0.2 for Set 1 and Set 2, and with
K0 = 0.4 for Set 1+2 (Table 2). Correlation coefficients
>0.9 were achieved in these cases. Leave-one-out control
of predictivity for three optimal QSAR equations is char-
acterized by R2

cv values >0.75. The especially high cross-
validation coefficient of 0.821 for Set 2 can be explained
by the low diversity of the dataset, which contained only
triazolethiol molecules. It should be noted that
f CXCR2 antagonists with different optimality criterion thresholds K0

R R2
cv Pinf

0.890 0.610 0.967

0.914 0.766 0.966

0.862 0.238 0.969

0.853 0.611 0.953

0.940 0.821 0.898

0.926 0.794 0.900

0.864 0.680 0.950

0.891 0.737 0.946

0.874 0.705 0.952

0.908 0.785 0.950

0.881 0.722 0.945



Table 3. Calculated and cross-validated biological activities of CXCR2 antagonists

Compound pIC50 Set 1 Set 2 Set 1+2

pIC
ðcÞ
50 pIC

ðpredÞ
50 pIC

ðcÞ
50 pIC

ðpredÞ
50 pIC

ðcÞ
50 pIC

ðpredÞ
50

1 6.043 6.00 5.97 6.78 6.83

2 7.201 6.95 6.90 7.63 7.65

3 8.000 7.52 7.48 7.67 7.65

4 6.943 7.45 7.49 7.33 7.35

5 8.155 7.70 7.68 8.28 8.29

6 7.921 7.92 7.92 8.14 8.17

7 7.602 7.48 7.46 7.20 7.18

8 8.222 8.42 8.47 7.99 7.96

9 7.658 7.81 7.83 7.74 7.75

10 7.244 7.40 7.42 7.44 7.45

11 7.658 7.28 7.26 7.59 7.58

12 6.495 6.47 6.46 5.93 5.85

13 6.066 6.08 6.08 5.83 5.80

14 4.963 5.66 5.83 5.31 5.40

15 6.699 6.35 6.20 6.16 6.11

16 8.032 8.03 8.03 7.81 7.77

17 7.495 8.03 8.11 7.50 7.50

18 6.886 6.62 6.59 6.23 6.09

19 6.886 6.54 6.50 6.43 6.35

20 6.398 6.57 6.59 6.36 6.35

21 6.337 6.74 6.80 6.89 7.00

22 7.046 6.71 6.59 6.94 6.91

23 7.495 7.20 7.11 6.74 6.69

24 6.553 6.93 7.10 6.23 6.21

25 6.000 5.97 5.96 6.43 6.47

26 6.796 6.94 7.00 6.83 6.86

27 7.553 7.58 7.69 7.52 7.45

28 5.620 5.75 5.76 5.61 5.61

32 5.357 5.38 5.39 5.70 5.72

33 5.114 4.90 4.84 5.35 5.37

34 5.377 5.29 5.25 5.88 5.93

35 5.456 5.43 5.42 5.70 5.71

36 5.456 5.60 5.61 5.77 5.78

37 5.553 5.38 5.36 5.63 5.63

38 5.638 5.37 5.34 5.90 5.91

39 5.699 5.82 5.86 5.77 5.77

40 5.699 5.73 5.76 5.32 5.29

41 5.854 6.00 6.01 5.67 5.67

42 5.854 5.83 5.83 5.98 5.98

43 6.000 6.27 6.30 5.91 5.91

44 6.051 5.82 5.80 5.96 5.96

45 6.081 6.30 6.33 5.63 5.61

46 6.097 6.10 6.10 6.75 6.77

47 6.174 6.40 6.44 6.63 6.64

48 6.347 6.65 6.72 6.24 6.24

49 6.387 6.49 6.50 6.14 6.14

50 6.456 6.29 6.25 6.20 6.19

51 6.456 6.38 6.37 6.80 6.81

52 5.000 5.23 5.34 5.43 5.48

53 5.377 5.66 5.69 5.95 5.98

54 6.137 6.06 6.06 6.06 6.06

55 6.347 5.98 5.89 6.38 6.38

56 6.523 6.63 6.68 6.25 6.21

57 6.770 6.61 6.50 6.82 6.85

58 7.036 6.95 6.92 6.69 6.66

59 7.553 7.11 6.94 6.70 6.57
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low-dimensional bases of H variables reproduce well the
informational content of initial redundant V matrices,
as indicated by Pinf values in Table 2.

Calculated and cross-validated activities of CXCR2
antagonists are shown in Table 3, and corresponding
plots of cross-validated vs. experimental biological data
are shown in Figure 2. For compounds from all three
datasets, sufficiently small deviations of calculated
pIC

ðcÞ
50 and cross-validated pIC

ðpredÞ
50 activities from the

experimental pIC50 were obtained. Standard deviations
of pIC

ðcÞ
50 for Set 1, Set 2, and Set 1+2 were 0.356,



Table 4. Characteristics of QSAR models obtained after 50% variation

of weight coefficients wq, wH, wR with respect to the base model for Set

1+2

QSAR model S2 R R2
cv Pinf

Base model 0.150 0.908 0.785 0.950

Decreased wq 0.197 0.877 0.709 0.939

Increased wq 0.128 0.922 0.793 0.956

Decreased wR 0.179 0.889 0.740 0.951

Increased wR 0.151 0.907 0.780 0.948

Decreased wH 0.182 0.887 0.731 0.956

Increased wH 0.152 0.906 0.781 0.939
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0.219, and 0.387, respectively, and corresponding values
for pIC

ðpredÞ
50 were of the same order of magnitude: 0.426,

0.321, and 0.432. Thus, the frontal polygon method
allows us to derive high-quality QSAR models, both
within structurally similar CXCR2 antagonists (Set 2),
and within a more diverse series of compounds (Set 1
and Set 1+2).

Previously, we reported further improvements of QSAR
models could be made by variations of weight coeffi-
cients in Eq. 1 and construction of higher-quality linear
regressions related with new OS arrays.35 Considering
that each of these coefficients reflects an influence of cer-
tain recognition parameters on the magnitude of F in
Eq. 1, we can assess the extent to which a given para-
meter is involved into molecular recognition process.
Thus, we compared the quality of the base QSAR model
for Set 1+2 (see Table 3 and the corresponding bold line
in Table 2) with that of modified models derived after
variation in one of the weight coefficients wq, wH, wR

(Table 4). This variation involved a 50% increase or de-
crease in one of these coefficients. Taking into account
that summation of 5 terms is performed in Eq. 1, the
K0 value was also increased or decreased by 10% with re-
spect to the initial value of K0 = 0.4 in order to maintain
the optimality criterion scale used in the base model.
Data in Table 4 show that an improvement occurs only
when wq is enhanced. All variations of other weight
coefficients lead to QSAR of lesser quality, as compared
to the base model. Growth of R and R2

cv with the in-
crease of wq may indicate that charge distribution plays
a more important role than other factors in molecular
recognition of CXCR2 antagonists during interaction
with the receptor. Thus, CXCR2 ligand binding may
involved charge transfer between phenyl rings and
counterparts in the receptor, as well as localized electro-
static interactions P.36,37
3. Discussion

In this study, we utilized the frontal polygon method to
develop QSAR models for 59 CXCR2 antagonists. Each
rigid submolecule of the antagonists investigated was
described by weight Wjl according to Eq. 6.32 This addi-
tive characteristic allows evaluation of the biological
activity of a compound as the sum of Wjl contributed
by all of its fragments. In the approach described previ-
ously,32 it was assumed that Wjl reflected an increment
of activity for lth submolecule in a novel compound if
this submolecule was surrounded by substituents similar
in recognition parameters to the substituents surround-
ing a given submolecule in the parent compound. Thus,
the fragment environment represents an important



Table 5. Characteristics of rigid submolecules and their increments in CXCR2 inhibitory activity

Submoleculea RX HX RY HY RZ HZ Wjl

XF

8 fragments 

71.6 0.52 6.80

55.7 �0.54 6.70

79.6 1.12 3.69

75.1 1.18 3.59

N

NCl

Cl

X

Y

2 fragments 

45.1 1.01 50.3 2.00 6.28

45.1 1.01 33.6 1.76 3.59

Cl Cl

X

2 fragments 

64.8 �0.24 5.44

54.4 2.29 3.08

Br

X

13 fragments 

72.5 �0.09 5.40

64.8 �0.24 5.14

47.2 1.25 3.62

54.4 2.29 3.13

X

40 fragments 

55.4 2.24 5.08

35.0 1.24 4.84

52.6 �0.04 2.45

90.4 5.66 2.40

O
X

1 fragment 

90.5 2.16 3.98

X

Cl

2 fragments 

59.4 3.04 3.71

54.4 2.29 3.55

X

Cl

Cl

8 fragments 

59.4 3.04 3.66

54.4 2.29 3.35

58.9 2.67 3.16

80.4 4.17 2.66

X

OH

Y

4 fragments 

48.5 1.59 6.6 0.93 3.49

40.7 0.56 6.6 0.93 3.47

40.7 0.56 7.5 0.08 3.23

48.5 1.59 7.5 0.08 3.18

X

OH

Y

Br

1 fragment 

48.5 1.59 6.6 0.93 3.45

X

Y

5 fragments 

75.0 1.61 8.9 �0.09 3.34
64.4 3.79 5.5 0.61 2.66

64.4 3.79 7.7 0.33 2.24

54.4 2.29 2.6 0.13 2.03

54.4 2.29 5.6 1.02 1.99

(continued on next page)
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Table 5 (continued)

Submoleculea RX HX RY HY RZ HZ Wjl

X

Cl

3 fragments 

64.4 3.79 3.23

59.4 3.04 3.16

54.4 2.29 2.85

X

Cl

Cl
1 fragment 

54.4 2.29 3.21

X

YCl

Z

1 fragment 

48.5 1.59 2.6 0.13 6.6 0.93 3.07

N
N

N

Y

X
H

1 fragment 

48.5 1.59 6.6 0.93 3.01

X

YZ

Cl

6 fragments 

48.5 1.59 2.6 0.13 9.0 �0.53 2.93

48.5 1.59 2.6 0.13 6.6 0.93 2.77

50.7 2.05 2.6 0.13 18.6 �1.31 2.29

48.5 1.59 2.6 0.13 26.3 �1.16 2.25

X

Cl

Cl

1 fragment 

54.4 2.29 2.84

XCl

2 fragments 

54.4 2.29 2.83

64.4 3.79 2.78

X

Y

3 fragments 

54.4 2.29 5.5 0.61 2.83

54.4 2.29 7.7 0.33 2.62

54.4 2.29 2.6 0.13 2.39

X

F

1 fragment 

54.4 2.29 2.75

X

Cl

Cl
1 fragment 

54.4 2.29 2.56

X

YZ

2 fragments 

40.7 0.56 2.6 0.13 7.5 0.08 2.56

7.5 0.08 40.7 0.56 2.6 0.13 2.48

(continued on next page)
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Table 5 (continued)

Submoleculea RX HX RY HY RZ HZ Wjl

X

YCl

Cl

1 fragments 

48.5 1.59 2.6 0.13 2.40

XY

6 fragments 

54.4 2.29 5.5 0.61 2.3954.4 2.29 5.6 1.02 2.23

64.4 3.79 7.7 0.33 1.84

54.4 2.29 7.7 0.33 1.83

1 fragment 

N X
54.4 2.29 2.25

X

Y

Cl

1 fragment 

48.5 1.59 2.6 0.13 2.15

S X

2 fragments 

115.1 2.94 0.73

54.4 2.29 0.65

O X

1 fragment 

54.4 2.29 0.57

NN

N SH

X

Y

38 fragments 

29.3 1.59 25.9 1.61 0.37

29.3 1.59 5.5 0.61 0.36

55.4 3.46 34.9 3.15 0.16

29.3 1.59 34.9 3.15 0.15

49.0 0.86 34.9 3.15 0.30

39.1 3.13 32.7 2.69 0.27

32.0 2.35 24.9 1.66 0.23

31.4 2.35 32.7 2.69 0.23

CH3–X

15 fragments

54.4 2.29 0.03

49.9 2.36 0.03

90.4 5.66 0.00

118.6 3.31 0.00

CF3–X

3 fragments

78.2 3.77 0.00

N
XY

O
8 fragments 

35.8 1.43 34.2 0.23 �0.06

35.8 1.43 22.8 �0.23 �0.08

35.8 1.43 42.2 0.82 �0.16

35.8 1.43 37.7 0.89 �0.17

S XY

1 fragment 

90.5 2.16 25.7 1.22 �0.06

a Selected fragments of each type with minimal and maximal Wjl values are presented.
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Table 6. Structures and biological activities of the N,N 0-diphenylureas investigated

N N

O

H HR1

R2

R3

R4

R5

R6

1–17

Compound R1 R2 R3 R4 R5 R6 IC50 (nM) pIC 50

1 OH H Cl H Br H 906 6.043

2 OH Cl Cl H Br H 63 7.201

3 OH CONH2 Cl H Br H 10 8.000

4 OH CH2NH2 Cl H Br H 114a 6.943

5 OH SO2NH2 Cl H Br H 7 8.155

6 OH SO2NMe2 Cl H Br H 12 7.921

7 OH H CN H Br H 25 7.602

8 OH Br CN H Br H 6 8.222

9 OH Cl CN H Br H 22 7.658

10 OH CN Cl H Br H 57 7.244

11 OH H NO2 H Br H 22 7.658

12 OH H NO2 H H H 320 6.495

13 OH NO2 H H H H 860 6.066

14 OH H H NO2 H H 10900 4.963

15 OH H CN H H H 200 6.699

16 OH SO2NH2 Cl H Cl Cl 9.3 8.032

17 –N@N–NH– CN H Br H 39 7.495

a Solution of compound 4 in the form of hydrochloride was investigated experimentally.

Table 7. Structures and biological activities of the nicotinamide N-oxides investigated

N+

O-

O N

H

F

R

18–25

Compound R IC50 (nM) pIC50

18 –SO2CH3 130 6.886

19 –SO2C2H5 130 6.886

20 –SO2CH(CH3)2 400 6.398

21 SO2 460 6.337

22 –SO2C6H5 90 7.046

23
SO2

COOH

32 7.495

24 –SO2CH2C6H5 280 6.553

25 Cl 1000 6.000
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factor in this approach. Regarding Set 1 and Set 2 of the
CXCR2 antagonists as a series of parent compounds,
while refractions and hydrophobicities are considered
recognition parameters, we calculated Wjl for submole-
cules with the use of OS arrays obtained by construction
of corresponding base QSAR models. Selected values of
Wjl minimal and maximal for each type of submolecule
are presented in Table 5, together with substituent
refractions R and hydrophobicities H in the structures
of parent compounds.

The procedure of de novo design can be performed
through linking submolecules to one another to achieve
the large sum of Wjl in a novel molecule.42,34 The latter
should reflect an optimal environment for each fragment
which would be close to that in parent molecules. This



Table 8. Structures and biological activities of the quinoxalines investigated

N

NCl

Cl N
N

S

S

H

N

NCl

Cl N
N

S

H
26 27

Compound IC50 (nM) pIC50

26 160 6.796

27 30 7.553

Table 9. Structures and biological activities of the triazolethiols investigated

NN

N SHR2

R1

28–59

Compound R1 R2 IC50 (nM) pIC50

28 C6H5CH2 C6H5 2400 5.620

29 C6H5 C6H5 Not active —

30 CH3 C6H5 Not active —

31 4-CF3C6H4CH2 C6H5 Not active —

32 3-OHC6H4CH2 C6H5 4400 5.357

33 C6H5CH2 4-Pyridinyl 7700 5.114

34 C6H5CH2 2-Furanyl 4200 5.377

35 C6H5CH2 4-CNC6H4 3500 5.456

36 C6H5CH2 3-CF3C6H4 3500 5.456

37 C6H5CH2 4-CF3C6H4 2800 5.553

38 C6H5CH2 4-CH3OC6H4 2300 5.638

39 C6H5CH2 3,5-diClC6H3 2000 5.699

40 C6H5CH2 2-Thienyl 2000 5.699

41 C6H5CH2 2-CH3C6H4 1400 5.854

42 C6H5CH2 2-CH3OC6H4 1400 5.854

43 C6H5CH2 3-ClC6H4 1000 6.000

44 C6H5CH2 2-FC6H4 890 6.051

45 C6H5CH2 4-ClC6H4 830 6.081

46 C6H5CH2 3,4-diClC6H3 800 6.097

47 C6H5CH2 2,5-diClC6H3 670 6.174

48 C6H5CH2 2-ClC6H4 450 6.347

49 C6H5CH2 2,4-diClC6H3 410 6.387

50 C6H5CH2 2-BrC6H4 350 6.456

51 C6H5CH2 2,3-diClC6H3 350 6.456

52 4-CH3OC6H4CH2 2,4-diClC6H3 10,000 5.000

53 3-CH3OC6H4CH2 2,4-diClC6H3 4200 5.377

54 3-CH3C6H4CH2 2,4-diClC 6H3 730 6.137

55 C6H5CH2CH2 2,4-diClC 6H3 450 6.347

56 4-ClC6H4CH2 2,4-diClC6H3 300 6.523

57 3-C6H5OC6H4CH2 2,4-diClC6H3 170 6.770

58 3-ClC6H4CH2 2,4-diClC6H3 92 7.036

59 3-ClC6H4CH2 2-ClC6H4 28 7.553
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procedure suggests that not only fragments with large
Wjl are useful for drug design. Some submolecules pos-
sess low weights Wjl or are flexible (Wjl = 0). Neverthe-
less, they may act as good property modifiers to
provide a more optimal environment for other frag-
ments. For example, weights of carbamide or triazole
fragments are not very high, but apparently they are
key submolecules that form certain spatial arrangements
and significantly influence the environment of other con-
stituents of molecules. Thus, in future studies, it will be
interesting to perform de novo design of CXCR2 antag-
onists on the base of data from Table 5.

The present model was built on experimental data
reflecting competitive interaction between CXCR2, ex-
pressed in isolated cellular membranes, and its synthetic



N N

O

H H

Cl

S
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Cl

ClNH2

O

O

Figure 3. Schematic representation of submolecules of compound 16.

Connections between fragments are shown by dashed lines. The

carbamide submolecule and benzene rings plus chlorine atoms form

rigid fragments. The remaining fragments (H, OH, SO2NH2) are

considered �flexible.�

Figure 4. Conformation of compound 17 stabilized by intramolecular

hydrogen bonding. Hydrogen bonding between the triazole hydrogen
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antagonists. However, chemokine receptor activity in
living cells is regulated at multiple levels, and CXCR2
antagonists can be also generated based upon secondary
binding determinants.38,39 For example, CXCR2 antag-
onists, such as Repertaxin, may block CXCR2 via non-
competitive allosteric inhibition.40 Importantly, the
frontal polygon method used here could be classified
as �indirect� QSAR approach35 and would be useful as
a tool for structure-based design of drugs with non-com-
petitive mechanisms of action, as well as for QSAR
modeling receptor antagonists functionally tested in
high throughput screening.

In summary, we applied the frontal polygon method to
QSAR analysis of four structural types of CXCR2
antagonists. This method is based on determining local
3D similarity of molecules and uses both geometric
and physicochemical parameters of molecular recogni-
tion. From the QSAR models that we have obtained,
it is apparent that charge distribution is an important
factor for inhibition of CXCR2 by small nonpeptide
antagonists. Additionally, structural fragments respon-
sible for antagonist activity were identified. This QSAR
method provides a relatively accurate model to evaluate
biological activities of new CXCR2 antagonists. Fur-
thermore, it is possible that this approach could be fur-
ther developed for de novo design of novel antagonists.
and carbamide oxygen (distance 2.54 Å) stabilized the conformation

(arrowheads). The geometry was optimized by the PM3 method (see

Section 4.1.1).
4. Materials and methods

4.1. Dataset and molecular structures

In this study, 59 CXCR2 antagonists were utilized to
construct QSAR models using published biological
data.14,17–22 Four main classes of substances represented
in the dataset are N,N 0-diphenylureas, nicotinamide N-
oxides, quinoxalines, and triazolethiols. The structures
of the compounds investigated and their biological
activities are shown in Tables 6–9. In these publications,
the binding affinity was expressed as an IC50 value for
[125I]-IL-8 binding to human recombinant CXCR2 ex-
pressed in membranes of Chinese hamster ovary
cells,14,17,21,22 BHK-570 cells,18 and HEK 293 cells.20

The negative logarithm of IC50 value [pIC50 or
�log(IC50)] was adopted as a dependent variable in
the QSAR analyses, with the IC50 values expressed in
molar (M) units.

In order to solve the problem of conformational flexibil-
ity, we subdivided the molecules into rigid and flexible
fragments (submolecules), as described previously.32

Phenyl groups, together with monoatomic substituents
(halogens), thienyl, benzothienyl, benzodiazine, triazole,
benzotriazole rings, as well as methyl and trifluorometh-
yl groups were treated as rigid fragments. All other sub-
molecules, containing internal rotational degrees of
freedom or too small for local similarity analysis, were
treated as flexible. The N-C(O)-N group in diphenylure-
as (without hydrogen atoms) was also considered to be
rigid. Local similarity was investigated between periph-
eral areas (fingerprints) of rigid fragments only, and
the flexible fragments did not serve as sources of finger-
prints. An example of subdividing compound 16 into
rigid and flexible submolecules is shown in Figure 3.
Since benzotriazole (compound 17) may exist in two
tautomeric forms, we considered one tautomer as dom-
inant because of the intramolecular hydrogen bond
(Fig. 4).

The general set of CXCR2 antagonists 1–59 was subdi-
vided into two datasets. The first of these (Set 1) includ-
ed compounds 1–27 (diphenylureas, N-oxides, and
quinoxalines). Set 2 included triazolethiol-derived com-
pounds (28–59) only, which were taken from publication
by Baxter et al.,20 where the binding activities of the
antagonists were determined by the same method.
QSAR models were derived for both datasets. In addi-
tion, all the antagonists (1–59) were treated as one set
of compounds (Set 1+2), and the corresponding total
QSAR models were also constructed.

4.1.1. Conformational analysis. The geometric structures
of molecules and atomic charges (qX) were calculated by
a semiempirical PM3 method, as implemented in the
HyperChemTM program package (Version 7). Full opti-
mization of geometry was made by the conjugate gradi-
ent procedure until the rms gradient became less than
0.01 kcal mol�1 Å�1. Atomic coordinates and charges
obtained were used for similarity analysis by the frontal
polygon method. Other molecular features necessary for
this analysis were hydrophobicities (HX) and molar
refractions (RX) of the corresponding substituents at
atoms X. Hydrophobicities and refractions were
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calculated by an additive scheme41 that includes various
increments for different atom types and is well suited for
compounds 1–59.
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Figure 5. Main steps of structure encoding and local similarity

determination for the frontal polygon method. (A) Structure repre-

sentation. For method applicability to a series of molecules with

different sizes and shapes, the 3D-structures of compounds are

described in terms of local 3D-similarity. Sets of peripheral atoms

(X) lying approximately in the same plane are located in each

molecule, and projections of the atoms on the corresponding plane

form a fingerprint. Each projection is characterized by the distance h of

an atom from the plane and by atomic properties q, H, R. Thus, the

3D-structure of a molecule is encoded by a sequence of the

fingerprints. (B) Determining similarity. For determining similarity

between molecules, a search of optimal superimpositions (OS) is

performed. The fingerprint of a given molecule is translated and

rotated in the same plane with the fingerprint of a template molecule to

achieve OS with minimal F value. All OS of given molecule fingerprints

on all the template fingerprints form an array for calculation of the V

matrix.
4.2. Method of frontal polygons

The frontal polygon method considers the three-dimen-
sional (3D) similarity of molecules, making it possible to
process series of conformationally flexible and structur-
ally diverse compounds.31,32 This method has been
extensively characterized and tested previously.32,42

The frontal polygon method is based on the hypothesis
of local 3D similarity, according to which the presence
of similar sites on the �peripheral surface� of molecules
makes them close in biological action.31 It is implied
that for complementarity, the ligands must be locally
similar to the receptor in terms of geometry, charge dis-
tribution, hydrophobic characteristics of atoms, and
atomic refractions.

Template molecules for structure comparison were cho-
sen distinctly for each set. Three each of the most active
and the least active compounds were used for obtaining
template fingerprints (1, 5, 8, 14, 16, 25 within Set 1; 29–
31, 57–59 within Set 2; 5, 8, 16, 29–31 within Set 1+2).
Triazines 29–31 are inactive, and their pIC50 are unde-
fined. These molecules served only as sources of tem-
plate fingerprints and were not accounted for as data
points in QSAR regressions.

The fingerprints obtained from rigid fragments using the
approach and parameters proposed previously31,32 in-
clude the projections of atoms characterized by their dis-
tances (hX) to the parent atom X, with the atomic charge
(qX). Projections of the boundary atoms (adjacent to
other fragments) were additionally characterized by
the hydrophobicities (HX) and the molar refractions
(RX) of the corresponding substituents at atom X (see
Section 4.1.1).

The fingerprints of the CXCR2 antagonist were subject-
ed to a pairwise comparison with template fingerprints
to establish the degree of local similarity of molecules
in optimal superimpositions (OS), using the following
optimality criterion:31,43

F ¼ 1

na0
wr

X
r2XP þ wh

X
ðhX � hPÞ2 þ wq

X
ðqX � qPÞ

2
h

þwH

X
ðHX � HPÞ2 þ wR

X
ðRX � RPÞ2

i
; ð1Þ

where n0 is the number of assignments in a given OS;
a = 1.5 is the parameter reflecting the specificity of the
superimposition (increasing with n0); P is the atom from
a template molecule fingerprint and X is the atom from
a given molecule fingerprint assigned to each other in a
given superimposition; rXP is the distance (in Å) between
assigned projections in a given superimposition; HX, HP

are hydrophobicities and RX, RP are molar refractions
of substituents connected with the atoms X and P (if
no submolecules are connected with an atom, then these
values are equal to 0); and wr, wh, wq, wH, and wR are the
weight coefficients. Weight coefficient values were
adopted to be reciprocal to dispersions of the molecular
recognition criteria rX, hX, qX, HX, and RX among all
the compounds under consideration. Taking into ac-
count that five criteria were used, each weight was calcu-
lated as follows:

w ¼ 1=ð5DÞ; ð2Þ
where D is the dispersion of the corresponding criterion.
Summation in expression Eq. 1 was performed over the
pairs of projections (for atoms X, P) related by assign-
ments. Superimpositions satisfying the conditions:

n0 P N 0; F 6 K0; ð3Þ
(where K0 and N0 are parameters) were considered as
optimal.

An example of a superimposition and general scheme of
the frontal polygon method are shown in Figure 5. Pro-
jection of an atom from the superimposed fingerprint is
regarded as assigned to a projection from the template
fingerprint if the distance between these projections is
60.45 Å.31,32 Optimality of a superimposition was at-
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tained by mutual translations and rotations of finger-
prints with the use of the efficient algorithm.43

QSAR models were constructed using the arrays of OS
determined with N0 = 4 (the value recommended in pre-
vious publications using the frontal polygon meth-
od31,32,43) and for various K0 (i.e., for different
requirements on the degree of structural similarity be-
tween molecules). Then, the values of K0 corresponding
to the best (base) model were fixed, the weighting coef-
ficients wq, wH, and wR were varied (relative to the values
calculated initially from Eq. 2), and new modified
QSAR models were constructed in order to assess the
role of electron density, hydrophobicity, and substituent
volume in the manifestation of a CXCR2 binding
affinity.

Finally, particular structure–activity relationships were
established in the form of linear equations based on
the arrays of OS:

pIC
ðcÞ
50 ¼

XH
h¼1

ahZh; ð4Þ

where pIC
ðcÞ
50 is the calculated biological activity and ah

are the regression coefficients. The reduced basis of vari-
ables (Zh) was determined by partial least squares,33 as
described previously.32 The dimensionality H of the ba-
sis was selected as small as possible but still providing
for sufficiently high values of the correlation coefficient
(R) and the cross-validation coefficient ðR2

cvÞ. The latter
characterizes the quality of the biological activity predic-
tion in a leave-one-out procedure

R2
cv ¼ 1� S2

cv

S2
ser

; ð5Þ

where S2
cv is the mean-square uncertainty of the progno-

sis and S2
ser is the mean-square deviation of activity in the

series of compounds studied.

A special feature of the frontal polygon method is the
possibility of representing the biological effect of a given
compound by the sum of partial effects (weights Wjl)
related to the component rigid submolecules32:

XL

l¼1

W jl ¼ pIC
ðcÞ
50;j; ð6Þ

where L is the total number of rigid fragments in the jth
molecule. Data on the weights Wjl can be useful for the
de novo design of active antagonists, as demonstrated
recently in the design and synthesis of novel cytochrome
P450 ligands.34 In this study, Wjl characteristics were
used to assess the extent to which the environment of
each fragment determines antagonist binging with
CXCR2.
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