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Among the multitude of learning algorithms that can be employed for deriving quantitative structure-
activity relationships, regression trees have the advantage of being able to handle large data sets, dynamically
perform the key feature selection, and yield readily interpretable models. A conventional method of building
a regression tree model is recursive partitioning, a fast greedy algorithm that works well in many, but not
all, cases. This work introduces a novel method of data partitioning based on artificial ants. This method is
shown to perform better than recursive partitioning on three well-studied data sets.

I. INTRODUCTION

The use of artificial intelligence algorithms, such ask
nearest neighbors, classification and regression trees, and
neural networks, for structure-activity correlation has vastly
increased over the past few years, due to the growing
availability of biological data and the rising demand for more
accurate and interpretable models for pharmaceutical devel-
opment. Regression trees1 offer several advantages over
alternative quantitative structure-activity relationship (QSAR)
methodologies, including simplicity, interpretability, and the
ability to handle large data sets.2 A regression tree model
can be viewed as a special type of decision tree that relates
a continuous target variabley (activity) with a set ofM
predictor variablesxk, k ) 1, ..., M (molecular property
descriptors). Creating a regression tree model usually in-
volves two stages: growing and pruning. The growing stage
attempts to partition the training data in a way that minimizes
the mean squared error (1/N)∑i)1

N (yi - ỹi)2, whereN is the
number of training cases andyi andỹi are the measured and
predicted activities of theith case, respectively. The resulting
tree is then pruned; i.e., some of the lower branches are
eliminated to avoid poor partitioning decisions based on small
data samples in the lower levels of the tree. A prediction of
the target variable from a given set of values for the predictor
variables is made by traversing the tree until a leaf is reached.
The predicted value is calculated from a model, e.g., the
average or some other linear model, that is derived from the
training cases associated with this leaf (see Figure 1).

While there are a multitude of methods for pruning a
regression tree and a variety of different models that can be
used in the tree leaves, the growing stage almost invariably
employs a greedy recursive partitioning (RP) algorithm that
finds the best possible split for each tree node as growing
proceeds. RP often provides a good tree model; however, it
rarely results in the optimal tree. In this paper we introduce
a novel stochastic partitioning algorithm for growing regres-
sion trees, ANTP, that is based on artificial ant colony
systems.3 Because ANTP allows exploration of possible data

partitioning decisions, it produces better quality tree models
than those obtained by RP.

II. METHODS

The algorithms based on artificial ant systems are inspired
by the fact that real ants, using deposits of pheromone as a
communication agent, are able to find the shortest path
between a food source and their nest.3 A moving ant deposits
pheromone on the ground, thus marking its path. Although
each individual ant moves at random, it can detect pheromone
trails and follow one of them with a probability proportional
to the amount of pheromone on the trail. By adding its own
pheromone deposits, the ant reinforces the trail and makes
it more attractive to the other ants. While all paths are initially
equally probable, the shorter ones encounter more ants
making round trips to the food source per time unit and,
therefore, receive more pheromone. Thus, short paths become
increasingly more attractive to the ants. Eventually, all ants
follow the shortest trail.

In the application at hand, each ant represents a regression
tree, while pheromone trails are emulated by a separate
binary reference tree that represents the topological union
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Figure 1. A regression tree trained on a sample data set consisting
of 10 training cases with 2 predictor variablesx1 and x2. During
the growing stage, internal tree nodes are assigned test conditions,
e.g.,x1 < 0.3, by a data partitioning algorithm. If a case satisfies
the condition in a node, it proceeds to the left subtree. Otherwise
it goes to the right subtree. Any case with a given set ofx1 andx2
reaches a unique tree leaf. A prediction model is stored in each
leaf, such that the predicted activity of a case is the average activity
of the training cases that reached the same leaf. Leave-one-out
predictions for a training casei are made by excludingyi from the
average, e.g., the leave-one-out prediction fory4 is (y2 + y6)/2, while
the regular prediction is (y2 + y4 + y6)/3 given by the leftmost
leaf.
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of all the “ant” trees encountered in the course of the
simulation. The growing process consists of recursive binary
splits of the training cases contained in the tree leaves. For
each leaf node one must choose a descriptork and a value
of this descriptorVk. The cases are then partitioned into the
left and right leaves on the basis of the condition

wherexk,i is the value of descriptork for casei. RP tests all
possible combinations ofk and i to find the best possible
split Vk ) xk,i, most commonly one that minimizes the sum
of squared deviations in the two resulting leaves∑i)1

nL (yi -
yjL)2 + ∑i)1

nR (yi - yjR)2, where nL, yjL, nR, and yjR are the
number of cases and the average of the target variable in
the left and right leaves, respectively. In contrast, ANTP
selectsk and Vk randomly on the basis of a probability
distribution that reflects the amount of pheromone deposited
in the reference tree. During initialization, unique valuesxk,i

of each predictor variablek are sorted and distributed into a
small preset number of bins, so that each bin contains an
approximately equal number of close values. Each node of
the reference tree contains the weightswk contributing to
the probability

of choosing descriptork for splitting the data in the
corresponding ant tree node, as well as weightswk,n for each
of the bins, wheren ) 1, ...,Nb (Nb is the number of bins).
After k is chosen, the algorithm identifies the valuesxk,i that
can be used for splitting, and the bins to which they belong.
One of these bins,b, is chosen randomly with a probability

and the best possible split value within this bin is selected.
With a probabilityp0, the latter choice can be replaced by a
search for the overall best split value among the identified
bins. In addition, the last split in each tree branch is chosen
in a greedy fashion, i.e., by finding the best possible split
among all possiblek and i. Once the ant tree growth is
completed, for each of its nodes the weightswk andwk,b are
updated by adding “pheromone” on the corresponding nodes
of the reference tree according to the pheromone update rules
defined by eqs 4a and 4b

∆wvar and∆wbin are the weight increments,g(x) is a scaling
function, andRloo

2 is the “leave-one-out” correlation coef-
ficient defined by eq 5, whereỹi is the prediction for casei
made without taking that case into account (see Figure 1)

andyj is the average activity over all training cases. A number
of ant trees are grown consecutively, and the tree that exhibits

the largest Rloo
2 is recorded. Because finding the best

possible tree is a multimodal optimization problem, this
process should be repeated several times to minimize the
likelihood of accidental convergence to a poor local mini-
mum.

To assess the effectiveness of the ANTP algorithm, we
compare its results to those of a completely random search
in regression tree space for each data set. Random tree
generation starts with a single tree node containing all
training cases. At each step, the training cases in a randomly
selected leaf node are partitioned according to eq 1 into two
subsets that are placed into two newly formed leaf nodes by
randomly choosing a descriptork and its valueVk. This
process is repeated until the stopping criteria are met.

We demonstrate the use of the ANTP algorithm on three
well-studied data sets: antifilarial activity of antimycin
analogues (AMA),4 binding affinities of ligands to benzo-
diazepine/GABAA receptors (BZ),5 and inhibition of dihy-
drofolate reductase by pyrimidines (PYR).6 For each data
set we reportRloo

2 andR2 of the best model obtained in two
series of 10 and 1000 runs of random search and ANTP
algorithms. In each run of the ANTP algorithm, 2000 ant
trees were grown, with the weightswk andwk,n initialized to
0.01,Nb ) 10, p0 ) 0.5, and the weight increments set to
0.1. The scaling functiong(x) in eqs 4a and 4b was set to

whered is the depth of the tree at the given node. The choice
of this function emerged from two considerations. First, the
scaling function should allow distinguishing better models.
The function given by eq 6 increases 5-fold asx ≡ Rloo

2

increases by 0.2. Second, the deeper the node is located in
the reference tree, the fewer ant trees will sample the possible
splits at that node. The factor 2d was introduced to partially
compensate for that. Each random search run generated 2000
random trees and saved the one with the largestRloo

2 . In all
calculations, the stopping criterion of a minimum of five
cases per tree leaf was employed. The reported time is the
total CPU time required to complete one run on a 733 MHz
Pentium III processor.

All programs were implemented in the C++ programming
language and are part of the DirectedDiversity7 software
suite. They are based on 3-Dimensional Pharmaceuticals’
Mt++ class library8 and are designed to run on all Posix-
compliant Unix and Windows platforms. Parallel execution
on systems with multiple CPUs is supported through the
multithreading classes of Mt++. All calculations were
carried out on a Dell workstation equipped with two 733
MHz Pentium III Intel processors running Windows NT 4.0.

III. RESULTS AND DISCUSSION

The values ofRloo
2 and R2 obtained after the growing

stage by RP and by 10 runs of ANTP and random search
are presented in Table 1. For all three data sets ANTP
significantly improved the model produced by RP, thereby
providing better starting points for the pruning stage. For
the BZ and PYR data sets, the random search also produced
better models than RP. In addition, for the PYR data set the
random search performed almost as well as ANTP. As one
would expect, increasing the number of runs 10-fold

xk,i < Vk (1)

pk ) wk/∑
k

wk (2)

pb ) wk,b/∑
b

wk,b (3)

wk ) wk + ∆wvarg(Rloo
2 ) (4a)

wk,b ) wk,b + ∆wbing(Rloo
2 ) (4b)

Rloo
2 ) 1 - ∑

i)1

N

(yi - ỹi)
2/∑

i)1

N

(yi - yj)2 (5)

g(x) ) 2d(55x - 1)/(55 - 1) (6)
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considerably improved the outcome of the random search
due to better sampling (see Table 2). In particular, the best
Rloo

2 ) 0.742 found in the series of 1000 random search runs
for the AMA data set exceeded the RP value of 0.736.
However, the ANTP results changed only marginally. This
reflects the advantages of the ANTP algorithm, since only
10 runs were sufficient to find a good tree model for each
data set. To illustrate the resulting regression tree models,
the best models generated by the ANTP and RP algorithms
for the BZ data set are presented in Figures 2 and 3.

The execution time of a single ANTP run was 1.2, 1.6,
and 2.0 s for the AMA, BZ, and PYR data sets, respectively.
The overhead of maintaining the reference tree was minimal,
so the random search running time was practically the same
as that of ANTP. The RP algorithm is very fast; its execution
time was 2-4 ms for all three data sets.

The quality of the ANTP algorithm can be assessed by
comparing the distribution of theRloo

2 values of 1000

independently produced ANTP models to that of 1000 tree
models generated by random search and to theRloo

2 value of
the RP model. For all three data sets, the ANTP distribution
exhibited a considerable shift to higherRloo

2 values with
respect to the random search distribution, as shown in Figures
4-6. In fact, 99.3%, 99.6%, and 68.0% of the ANTP models
were better than the best randomly generated model for the
AMA, BZ, and PYR data sets, respectively. Therefore, a few
runs of the ANTP algorithm are likely to produce a
significantly better starting point for pruning than RP or
random search.

Figure 2. Regression tree model generated by the RP algorithm
for the BZ data set (not pruned). The notation for the descriptors
can be found in ref 5.

Figure 3. Regression tree model generated by the ANTP algorithm
for the BZ data set (not pruned). The notation for the descriptors
can be found in ref 5.

Table 1. Comparison of Models Created by 10 Runs of Random
Search and ANTP Algorithms and by RP

Rloo
2 R2

data set N M random RP ANTP random RP ANTP

AMA 31 53 0.681 0.736 0.821 0.776 0.829 0.877
BZ 57 42 0.667 0.499 0.728 0.755 0.652 0.806
PYR 74 27 0.626 0.423 0.634 0.712 0.618 0.721

Table 2. Comparison of Models Created by 1000 Runs of Random
Search and ANTP Algorithms and by RP

Rloo
2 R2

data set N M random RP ANTP random RP ANTP

AMA 31 53 0.742 0.736 0.821 0.819 0.829 0.877
BZ 57 42 0.709 0.499 0.766 0.793 0.652 0.833
PYR 74 27 0.624 0.423 0.643 0.710 0.618 0.728

Figure 4. Histograms of the number of tree models that were
produced for the AMA data set by the ANTP and random search
algorithms in a series of 1000 runs and that exhibitedRloo

2 within
each of the 50 consecutive ranges of values between 0 and 1.Rloo

2

of the model generated with the RP algorithm is marked with a
black bar on both plots.

Figure 5. Histograms of the number of tree models that were
produced for the BZ data set by the ANTP and random search
algorithms in a series of 1000 runs and that exhibitedRloo

2 within
each of the 50 consecutive ranges of values between 0 and 1.Rloo

2

of the model generated with the RP algorithm is marked with a
black bar on both plots.
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Because RP performs some optimization of the splitting
criteria, it is natural to assume that RP would produce a better
model than a random search. Indeed, for the AMA data set
only 1 out of the 1000 random search runs resulted in a
model that was slightly better than the RP model (see Figure
4). However, for the BZ and PYR data sets, the RP models
(Rloo

2 ) 0.423 and 0.499, respectively) were actually worse
than virtually all 1000 models produced by random search,
with the largestRloo

2 ) 0.709 and 0.624, respectively (see
Figures 5 and 6). This implies that for some data sets
recursive partitioning produces results significantly worse
than those of even a short random search.

The ANTP algorithm is effective if (a) the ant trees
sufficiently sample possible splitting conditions given by eq
1 at each node and (b) accumulation of “pheromone deposits”
in the reference tree clearly distinguishes between “good”
and “bad” splits. The first condition is met by using a
sufficient number of ant trees in each ANTP run. However,
since the number of nodes in the reference tree can grow
exponentially with the number of nodes in the target tree
model, the required number of ant trees may become
prohibitively large. This may limit the application of the
ANTP algorithm to reasonably small tree models (but not
necessarily small data sets). The second condition can be
satisfied by selecting an appropriate scaling functiong(x),
initial weights wk and wk,n, and their increments. Another
possible approach that improves convergence by gradually
increasing the probability of choosing a descriptor or its value
with relatively large corresponding weights is to use prob-
abilities pk ) wk

R/∑kwk
R and pb ) wk,b

R /∑bwk,b
R instead of

those given by eqs 2 and 3. The parameterR is increasing
linearly (or according to some other law) with each con-
structed ant tree between 1 and some maximum value (e.g.,
2 or 3).

One can also use other stochastic techniques, such as
simulated annealing or genetic algorithms, to grow regression
trees. Simulated annealing is a global, multivariate optimiza-
tion technique based on the Metropolis Monte Carlo search
algorithm. The method starts from an initial state, and walks
through the state space associated with the problem of interest

by generating a series of small, stochastic steps. An objective
function maps each state into a numeric value that measures
its fitness. With respect to growing regression trees, astate
is a unique tree that satisfies the given constraints on the
minimum number of training cases per leaf node, itsfitness
is the leave-one-out correlation coefficientRloo

2 , and thestep
is either creation of two new leaf nodes by splitting an
existing leaf node or a reverse operation that merges two
sibling leaf nodes back into a single node. While downhill
transitions are always accepted, uphill transitions are accepted
with a probability that is proportional top ) e-∆E/KBT, where
∆E is the energy (fitness) difference between the two states.
Boltzmann’s constant,KB, is used for scaling purposes, and
T is an artificial temperature factor used to control the ability
of the system to overcome energy barriers. Simulated
annealing is effective only when the energy surface is
relatively smooth and the steps are local in nature. However,
when applied to regression trees, each step can have a
dramatic impact on the fitness function. This leads to very
poor convergence of the algorithm. In fact, the distribution
of the resultingRloo

2 values is very close to that of a random
search, as shown in Figure 7 for the AMA data set. Thus,
simulated annealing does not provide a significant benefit
with respect to the quality of the resulting models, and in
addition it is computationally expensive.

In conclusion, we developed a novel stochastic algorithm,
ANTP, for binary data partitioning. We also demonstrated
that for some data sets the conventional recursive partitioning
algorithm is inferior to random search. While the ANTP

Figure 6. Histograms of the number of tree models that were
produced for the PYR data set by the ANTP and random search
algorithms in a series of 1000 runs and that exhibitedRloo

2 within
each of the 50 consecutive ranges of values between 0 and 1.Rloo

2

of the model generated with the RP algorithm is marked with a
black bar on both plots.

Figure 7. Histograms of the number of tree models that were
produced for the AMA data set by the simulated annealing and
random search algorithms in a series of 1000 runs and that exhibited
Rloo

2 within each of the 50 consecutive ranges of values between 0
and 1. Rloo

2 of the model generated with the RP algorithm is
marked with a black bar on both plots. In each run of the simulated
annealing algorithm the temperature is reduced according to a
Gaussian cooling schedule, comprising 30 consecutive temperature
cycles with 2000 annealing steps performed at a constant temper-
ature during each cycle (other cooling schedules, such as linear,
exponential, and Lorentzian, can also be used). Each cycle starts
with the tree with the largestRloo

2 encountered during the previous
cycle. This strategy proved to work better than starting the cycle
with the last tree of the previous cycle. To circumvent the difficulty
of selecting an appropriate value forKB, in our implementation
this is not a true constant but is adjusted on the basis of an estimate
of the mean transition energy. In particular, at the end of each
transition, the mean transition energy is updated, and the value of
KB is adjusted so that the acceptance probability for a mean uphill
transition at the final temperature is 0.1%.
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algorithm may not necessarily converge to the optimal tree,
it offers clear benefits in the quality of initial data partitioning
for regression tree-based QSAR models, as compared to RP.
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